Journal of Organometallic Chemistry 693 (2008) 2700-2702

Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

C-H activation of benzene with Cp*Ru(CO)₂CH₃

John R. Moss^{a,*}, Siyabonga Ngubane^a, Akella Sivaramakrishna^a, Banothile C.E. Makhubela^a, John E. Bercaw^b, Jay A. Labinger^b, Michael W. Day^b, Lawrence M. Henling^b, Hong Su^a

^a Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa

^b Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, CA 91125, USA

ARTICLE INFO

Article history: Received 4 January 2008 Received in revised form 25 April 2008 Accepted 6 May 2008 Available online 13 May 2008

Keywords: C-H bond activation of benzene Ruthenium carbonyl complexes Irradiation Structural characterization

ABSTRACT

Irradiation of $Cp^*Ru(CO)_2CH_3$ (1) in C_6D_6 at room temperature yields $Cp^*Ru(CO)_2C_6D_5$ and CH_3D (where $Cp^* = n^5-C_5Me_5$). $Cp^*Ru(CO)_2CD_3$ (2) has also been prepared and similar irradiation in C_6H_6 yields $Cp^*Ru(CO)_2C_6H_5$ (3) and CD_3H . This latter reaction confirms that it is the methyl group bonded to ruthenium that is involved in the C-H activation process and not the methyl groups on the $Cp^*ligand$ system. The compound $Cp^*Ru(CO)_2C_6H_5$ (3) has been prepared for the first time in good yield by the reaction of $Cp^*Ru(CO)_2Br$ with NaBPh₄. X-ray crystal structures of both $Cp^*Ru(CO)_2CH_3$ (1) and $Cp^*Ru(CO)_2C_6H_5$ (3) have been determined and the results are reported and discussed.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The intermolecular activation of C–H bonds by metal complexes is an important process, which may comprise the first step in the catalytic conversion of alkanes into more useful products [1–3]. Platinum group metal compounds are particularly useful in this regard [3]. Metal–alkyl complexes L_mM-R in particular have been shown to undergo a variety of C–H activation reactions; recent reviews discuss the current understanding of the sigma-bond metathesis reactions of L_mMR with R'–H [4].

There have been a number of recent studies of reactions of $L_m RuR$ (with various ligand systems L_m ; $R = CH_3$ or C_6H_5) with arenes. Diversi et al. reported the thermolysis (48 h, 120 °C) of $Cp^*Ru(PMe_2Ph)_2CH_3$ in benzene to give $Cp^*Ru(PMe_2Ph)_2C_6H_5$ [5]. Oxgaard and Goddard have carried out calculations on the system $TpRu(CO)(MeCN)C_6H_5$ which catalyzes hydroarylation via C-H activation [6]. More recently, Cundari et al. have investigated the use of complexes of the type TpRu(L)(MeCN)R (L = CO, PMe_3; R = Me or Ph; Tp = hydridotris(pyrazolyl borate) toward hydroarylation of isonitriles [7].

There are few reports on C–H activation by species generated from the "classical" organometallic complexes $CpRu(CO)_2CH_3$ or $Cp^*Ru(CO)_2CH_3$. Photolysis of $[CpRu(CO)_2]_2$ in toluene generates (*inter alia*) $CpRu(CO)_2H$, presumably via H-atom abstraction by the 17-electron intermediate $CpRu(CO)_2$ [8]. Photolysis of a bridged dicylopentadienyl-dirutheniun species leads to (thermally

* Corresponding author. E-mail address: John.Moss@uct.ac.za (J.R. Moss). reversible) activation of a ring C–H bond [9]. These various studies prompted us to report our findings on the reaction of the related system $Cp^*Ru(CO)_2CH_3$ with benzene under irradiation.

2. Results and discussion

Irradiation of a solution of Cp^{*}Ru(CO)₂CH₃ in C₆D₆ results in the clean formation of a new species, as judged by the disappearance of the Ru–CH₃ peak in the ¹H NMR spectrum and the appearance of a single new Cp^{*} peak at δ 1.46 ppm. The IR spectrum of this solution also showed the appearance of two new ν (CO) peaks. High resolution mass spectrometry was consistent with the new species being Cp^{*}Ru(CO)₂C₆D₅. The ¹H NMR spectrum of this reaction solution was also consistent with the main organic product being CH₃D (Eq. (1)).

A possible mechanism for this reaction involves loss of CO, oxidative addition of a benzene C–D bond, elimination of CH₃D and then re-coordination of CO. Alternatively, the mechanism could involve a concerted process, as has been suggested by others for related systems [5,6]. There is also the possibility that the methane is generated from one of the methyl groups on the pentamethylcyclopentadienyl ring. In order to rule this out, we made the

⁰⁰²²⁻³²⁸X/\$ - see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2008.05.013

perdeuterated methyl compound $Cp^*Ru(CO)_2CD_3$ and reacted it with benzene; NMR spectra were consistent with the formation of CD_3H and $Cp^*Ru(CO)_2C_6H_5$ as shown in Eq. (2).

The reaction of $Cp^*Ru(CO)_2CD_3$ with C_6D_6 yielded $Cp^*Ru(CO)_2-C_6D_5$ and no protio methanes. It is quite conclusive that the CH_3 of the Cp^* is not being involved with the formation of methane (Eq. (3)).

Since the phenyl compound $Cp^*Ru(CO)_2C_6H_5$ (**3**) had not previously been reported, we prepared it independently by a method which has been used for preparing related phenyl compounds [9], shown in Eq. (4). The spectroscopic data obtained for compound (**3**) was completely consistent with the Ru–phenyl compound being produced as described in Eqs. (2) and (4).

Since no crystal structures have been previously reported on simple alkyl compounds of the type $Cp^*Ru(CO)_2R$, we determined the crystal structures of both the methyl (Fig. 1) and phenyl (Fig. 2) complexes for comparison (Table 1). The molecular struc-

Fig. 1. Molecular structure of $Cp^*Ru(CO)_2CH_3$ (1) showing the atom numbering scheme.

Fig. 2. Molecular structure of $Cp^{^{\ast}}Ru(CO)_{2}C_{6}H_{5}$ (3) showing the atom numbering scheme.

Table 1			
Comparison of X-ray	/ structures of	complexes 1	and 3

	$Cp^{*}Ru(CO)_{2}CH_{3}$	$Cp^{*}Ru(CO)_{2}C_{6}H_{5}$
Ru–CO ₍₁₎	1.8774 (11)	1.871 (4)
Ru-CO ₍₂₎	1.8803 (11)	1.874 (4)
Ru–R	2.1441 (15)	2.105 (3)
$Ru-C_5Me_5$ (average)	2.2669 (12)	2.260 (3)
C-O ₍₁₎	1.1443 (14)	1.151 (4)
C-O ₍₂₎	1.1457 (14)	1.147 (4)
	90.32 (5)	92.68 (15)
	87.92 (6)	90.70 (13)
(2)OC R	89.76 (6)	90.71 (13)

tures of compounds **1** and **3** are similar; as one would expect, the Ru–C bond length in the phenyl compound (2.105 (3) Å) is shorter than that in the methyl compound (2.1441 (15) Å). The Ru–C₆H₅ distance in (**3**) is very similar to that found in Cp^{*}Ru(PMe₂Ph)₂C₆H₅ (2.104 Å) [5]. The angles given in Table 1 are all bigger for the phenyl compound as compared with the methyl compound, which may be due to steric crowding at the metal centre.

3. Conclusions

We have shown that the complex $Cp^*Ru(CO)_2CH_3$ can activate the C–H bond of benzene to give the new Ru–phenyl complex $Cp^*Ru(CO)_2C_6H_5$ and methane. We have also demonstrated that the methyl group in the methane is derived from the methyl group directly bonded to the Ru. The Ru–phenyl complex has also been prepared by another route and successfully characterized. The Ru–C₆H₅ distance of 2.105(3) Å is significantly shorter than Ru– CH₃ (2.144 (2) Å) in Cp^{*}Ru(CO)₂R.

4. Experimental

4.1. General

All preparations were carried out in dry nitrogen saturated solvents using standard Schlenk techniques. Irradiations were carried out with a Englehard Hanovia Lamp (125 W) at a distance of 16 cm from the reaction vessel. Many reactions were carried out in J. Young re-sealable NMR tubes. ¹H and ¹³C NMR spectra were re-

corded on a Varian Mercury 300 or Varian INOVA - 500 spectrometers at room temperature. All ¹H and ¹³C NMR chemical shifts are reported relative to tetramethylsilane. IR spectra were recorded on a Bio Rad Merlin spectrophotometer. Mass spectra were recorded on a JEOL JMS 600 mass spectrometer.

4.2. Synthesis of compounds 1-3

 $[Cp^*Ru(CO)_2]_2$ was prepared by the method of King et al. [10], and $Cp^*Ru(CO)_2CH_3$ (1) was prepared by the method of Malisch et al. [11]. The mass spectrum of **1** shows a parent ion at m/e308 P (16%) with the expected isotope pattern and other peaks at 293 P-CH3 (10%), 279 P-CO (40%), 264 P-CH3-CO (7%), 252 P-2CO (98%) and 235 P-2CO-CH₃ (77%). IR v(CO) (pentane) 2005 (s) and 1946 (s) cm⁻¹. Cp^{*}Ru(CO)₂CD₃ (**2**) was also prepared by the method of Malisch et al. [11] using CD₃I. The product was characterized by IR. ¹H NMR and mass spectra.

4.2.1. Preparation of $Cp^*Ru(CO)_2C_6H_5$ (**3**)

A solution of Cp^{*}Ru(CO)₂Br (0.101 g, 0.2713 mmol) was refluxed with NaBPh₄ (93.6 mg, 0.2735 mmol) in methanol for 4 h as reported by Haines et al. [12]. The solvent was removed and the product recrystallized from 3 ml of CH_2Cl_2/n -hexane (1:2) to give pure (**3**) as off-white prisms in good yield (72 mg, 72%). Anal. Calc. for C₁₈H₂₀O₂Ru: C, 58.52; H, 5.46. Found: C, 58.36; H, 5.58%. IR (v(CO) in CH₂Cl₂): 2005 (s) and 1945 (s) cm⁻¹; ¹H NMR (CDCl₃): δ 6.82-7.42 (m, 5H, Ph), 1.84 (s, 15H, Cp^*CH_3); ¹³C NMR: δ 202.8 (Ru-CO), 142.5, 127.7, 123.2, 100.1 (Ru-C₆H₅), 9.95 (CH₃-Cp^{*}).

4.3. Reaction of $Cp^*Ru(CO)_2CH_3$ with C_6D_6

Cp^{*}Ru(CO)₂CH₃ (5.4 mg) was transferred to a J. Young NMR tube and C₆D₆ (0.6 ml) was added. The resulting solution was subjected to three freeze-thaw cycles, and then allowed to warm to room temperature. The colourless solution was then irradiated for 4 h. The ¹H NMR spectrum now showed the peaks of $Cp^*Ru(CO)_2CH_3$ to have disappeared and a new Cp^* peak appeared at δ 1.46 ppm corresponding to $Cp^*Ru(CO)_2C_6D_5$ as well as a singlet at δ 0.14 corresponding to CH_4 (23%) and a triplet centred at δ 0.13 corresponding to CH₃D (77%). After removing the solvent, the residue in pentane showed v(CO) peaks in the IR spectrum at 2012 and 1956 cm⁻¹. A mass spectrum of this residue showed a parent ion measured at m/e 375.0812 (calculated for $C_{18}H_{15}D_5O_2Ru$: 375.0821). The data is consistent with the product being Cp^{*}Ru- $(CO)_2C_6D_5$.

4.4. X-ray crystal structure determinations

 $Cp^*Ru(CO)_2CH_3$ (1): Crystals of $Cp^*Ru(CO)_2CH_3$ were obtained by slow evaporation of the solvent from a cold pentane solution. X-ray data was collected on a Bruker SMART 1000 diffractometer and details of the crystal, data collection and refinement are given in Table 2 (see Supplementary Information).

 $Cp^*Ru(CO)_2C_6H_5$ (**3**): Crystals of $Cp^*Ru(CO)_2C_6H_5$ were grown from hexane solutions on cooling. X-ray data was collected on a Nonius Kappa-CCD diffractometer using graphite-monochromated Mo K α radiation (λ = 0.71073 Å) and details of the crystal, data collection and refinement are given in Table 3 (see Supplementary Information).

Acknowledgements

We thank the University of Cape Town, the DST Centre of Excellence in Catalysis, C^{*}Change, Anglo Platinum and BP Chemicals for support and Johnson & Matthey for the loan of ruthenium trichloride.

References

- [1] J.A. Labinger, J.E. Bercaw, Nature 417 (2002) 507. and references therein.
- K.I. Goldberg, A.S. Goldman, Activation and Functionalisation of C-H Bonds, vol. 885, American Chemical Society, Washington, DC, 2004.
- [3] B.L. Conleg, W.J. Tenn III, K.J.H. Young, S.K. Ganesh, S.K. Meier, V.R. Ziakdinov, O. Mironov, J. Oxgaard, J. Gonzales, W.A. Goddard III, R.A. Periana, J. Mol. Catal. A 251 (2006) 8.
- [4] (a) Z. Lin. Coord. Chem. Rev. 251 (2007) 2280:

 - (b) J.A. Labinger, J. Mol. Catal. A: Chem. 220 (2004) 27;
 (c) R.A. Periana, G. Bhalla, W.J. Tenn, K.J.H. Tomes, X.Y. Lin, O. Mironov, C.J. Jones, V.R. Ziatdinov, J. Mol. Catal. A 220 (2004) 7;
 - (d) A.E. Shilov, A.A. Shreinman, Coord. Chem. Rev. 24 (1977) 97-143;
 - (e) R.H. Crabtree, J. Chem. Soc., Dalton Trans. (2001) 2437;
 - (f) A.E. Shilov, G.B. Shul'pin, Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes, Kluwer, Dordrecht, 2000.
- P. Diversi, M. Fuligni, F. Marchetli, C. Pinzino, J. Organomet. Chem. 690 (2005) 605. and references therein.
- [6] J. Oxgaard, W.A. Goddard III, J. Am. Chem. Soc. 126 (2004) 442.
- J.P. Lee, J.O.C. Jimenez-Halla, T.R. Cundari, T.B. Gybbiem, J. Organomet. Chem. [7]
- 692 (2007) 2175, and references therein.
- W. Macyk, A. Herdegen, A. Karocki, G. Stochel, Z. Stasicka, S. Sostero, O. Traverse, J. Photochem. Photobiol. A: Chem. 103 (1997) 221. [8]
- [9] P. Burger, Angew. Chem., Int. Ed. Engl. 40 (2001) 1917.
- [10] R.B. King, M.Z. Iqbal, A.D. King, J. Organomet. Chem. 171 (1979) 53.
- [11] A. Stasunik, D.R. Wilson, W. Malisch, J. Organomet. Chem. 270 (1984) C18
- [12] R.J. Haines, A.L. du Preez, J. Am. Chem. Soc. 93 (1979) 2820.